Multi-target prediction for dummies using two-branch neural networks

نویسندگان

چکیده

Multi-target prediction (MTP) serves as an umbrella term for machine learning tasks that concern the simultaneous of multiple target variables. Classical instantiations are multi-label classification, multivariate regression, multi-task learning, dyadic prediction, zero-shot network inference, and matrix completion. Despite significant similarities, all these domains have evolved separately into distinct research areas over last two decades. This led to development a plethora highly-engineered methods, created substantially-high entrance barrier practitioners not experts in field. In this work we present generic deep methodology can be used wide range multi-target problems. We introduce flexible multi-branch neural architecture, partially configured via questionnaire helps end users select suitable MTP problem setting their needs. Experimental results illustrate proposed manifests competitive performance compared methods from specific domains.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-level branch prediction using neural networks

Dynamic branch prediction in high-performance processors is a specific instance of a general time series prediction problem that occurs in many areas of science. Most branch prediction research focuses on two-level adaptive branch prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and fields for novel s...

متن کامل

Dynamic Branch Prediction Using Neural Networks

Dynamic branch prediction in high-performance processors is a specific instance of a general Time Series Prediction problem that occurs in many areas of science. In contrast, most branch prediction research focuses on Two-Level Adaptive Branch Prediction techniques, a very specific solution to the branch prediction problem. An alternative approach is to look to other application areas and field...

متن کامل

Exploring Deep Neural Networks for Branch Prediction

Recently, there have been significant advances in deep neural networks (DNNs) and they have shown superior performance in audio and image processing. In this paper, we explore DNNs to push the limit for branch prediction. We treat branch prediction as a classification problem and explore both deep convolutional neural networks (CNNs) and deep belief networks (DBNs) for branch prediction. We ana...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Static and Dynamic Branch Prediction Using Neural Networks

In this short paper we investigated a new static branch prediction technique. The main idea of this technique is to use a large body of different programs (benchmarks) to identify and infer common C program behaviour. Then, this knowledge is used to predict new “unseen” branches belonging to new programs. The common behaviour is represented as a set of static features of branches that are mappe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2022

ISSN: ['0885-6125', '1573-0565']

DOI: https://doi.org/10.1007/s10994-021-06104-5